DJI FPV googles, bäst på marknaden

DJI FPV googles, bäst på marknaden

Detta headset tillhör DJIs digitala FPV system. Kvalitén är riktigt bra och det känns att de är ett par påkostade ögon. Med fyra antenner som sitter vinklade ifrån varandra lovas upp till 4km räckvidd. Längre än vad min radio klarar så det gäller att inte flyga för långt! I ögonen sitter en skärm på 1440x810 pixlar med en uppdateringsfrekvens på 120Hz.

Detta headset är i en helt annan klass än de analoga systemen som hittills varit det enda som funnits på marknaden. Har svårt att se att konkurrenterna kommer hålla fast vid den gamla tekniken då kvalitetsskillnaden på videoöverföringen helt enkelt är för stor. Bilden är nåja, kanske inte knivskarp men förvånansvärd bra, det handlar ju ändå om livestreamad video från ett flygtyg i hög hastighet! Pixligheten dyker upp lite då och då men jämfört med ett analogt system där bilden försvinner så fort man rundar ett träd är detta rena drömmen.

Vikten är 420g och de känns väldigt lätta när man har dem på sig. Detta mycket för att DJI inte gjort plats för några batterier. Det som medföljer är en lång sladd med XT60 kontakt förberedd att pluggas in i ett extern batteri. Detta ingår dock inte i det redan väl tilltagna priset utan måste köpas separat. Headsetet tar allt mellan 7,4-17,6V så 2-4S Lipo funkar bra. Kommer köra på ett 3S 5200mAh som jag har liggandes.

DJI AirUnit för digital FPV, racerdrönare

DJI AirUnit för digital FPV, racerdrönare

DJI släppte sitt digitala FPV-system tidigare i år och nu har det kommit på plats i min Armattan Marmotte. Har installerat hela systemet i den övre plattan för att enkelt kunna komma åt det.

Vad är då grejen med det här systemet? Jo,... det är digitalt! Länge har FPV-flygandet dragits med den dåliga kvalitén som den analoga sändaren ger. Mycket brus och störningar i bilden och dålig räckvidd. Detta systemet lovar fin bild i 720p med upp till 120fps och en överföring på >28ms. Har bara testat inomhus ännu och det ser mycket lovande ut.

Systemet består av:

  • Kamera med en 2,1mm lins som spelar in i 1080p/60fps
  • Airunit som agerar flightcontroller och sändare för den digitala videoöverföringen
  • Två antenner MMCX elbow

Finns det några nackdelar jämfört med de analoga systemen då? Ja, priset... för att kunna använda ovanstående grejer behöver man även köpa DJIs googles. Allt säljs i paket i olika former då man även kan välja att köra med DJIs radiosystem. Priset, i mitt fall utan radio, landade på drygt 7000:- Ett analogt system kan man få tag på för några hundralappar.

Flight controller till racerdrönare

Flight controller till racerdrönare

Valet av flight controller till sin drönare kan var svår med alla varianter som finns på marknaden. Det finns inte så mycket rätt eller fel utan den skall passa applikationen man bygger helt enkelt. Man behöver veta sitt behov innan man skaffar sig en.

Det finns några olika storlekar men standar är med fästhål 30,5X30,5mm som passer det flesta ramar. Skall man bygga en drönare med return-to-home funktion behöver flightcontrollern ha kompass och barometer. Detta går att lägga till externt men lika bra att köpa en som har allt man behöver från början så slipper man extra vikt. Just för return-to-home behövs även en GPS och den är alltid extern och kopplas in till flight controllern via en av UART-kontakterna.

I detta fall var jag ute efter en flight controller till min Armattan Marmotte som skall bli en FPV-racerdrönare och då behövs varken kompass eller barometer. Däremot är det najs om den kan kopplas direkt till DJIs air unit utan att jag skall behöva löda en massa och då hittade jag denna flight controller från Diatone Inovations: MAMBA 405DJI

Den har alla nödvändiga funktioner och lite därtill. Denna variant såldes även som ett stack med PDB (power distribution bord) och ESC (electric speed controller) i ett. Fartreglagen (ESC) är på 50A vardera och kommer räcka väl till mina motorer.

Jag kommer inte använda DJIs radiosystem så DJIs airunit kommer bara agera sändare för digitalvideo och info från flight controllern till DJI FPV googles.

Armattan Marmotte racer-drönare med DJI airunit

Armattan Marmotte racer-drönare med DJI airunit

Nu är den klar, det tog ett tag men oj va den flyger bra! Armattan Marmotte för DJI airunit. De olika komponenterna har jag skrivit om innan men detta sitter i:

  1. Flightcontroller: Diatone Mamba 405DJI
  2. Fartreglage: Diatone Mamba F50PRO 50A
  3. Motorer: Cyber Xing 2207,5 2555KV
  4. Mottagare: Spektrum 4651t
  5. Video: DJI fpv

Ramen är ordentligt stark i massiv kolfiber och kameraburen är gjord i titan. Modellen är ganska trång och då jag inte kör med DJIs sändare fick jag inte plats med mottagaren inuti utan printade en liten hållare som sitter längst bak, bakom batteriet. Några extra detaljer är printade motorskydd samt en printad hållare för buzzern. Kör med 4S 1550mAh batterier och det räcker gott och väl!

Wizzard 220 nya motorer, DJI Air Unit del 2

Wizzard 220 nya motorer, DJI Air Unit del 2

Sådär! Då var det klart :)

Uppgraderingen blev riktigt lyckad! Flyger hur bra som helst och är riktigt kul att flyga. Bara att byta från 3S till 4S gör väldigt mycket. De nya motorerna låter trevligare och bilden i DJIs system är i en klass för sig. En ny sak till är att mottagaren bytts ut till en Spekrum 4651t med telemetri så nu kan den skicka info till radion om te.x signalstyrkan vilken kan vara trevligt när man flyger en bit bort.

De bakre stagen printades med inkapslade muttrar så de sitter ordentligt, antennhållaren för DJIs antenner printades i flex så att de är lite mer hållbara vid "eventuella" krascher ;)

Har haft lite problem med radions räckvidd när mottagaren suttit inuti och antennerna pekat snett bakåt, tror att de hamnar i skugga av kolfiber-ramen lite för ofta. För att råda bot på det konstruerades den övre plattan med en hållare där bak samt en tillhörande liten specialanpassad låda för radiomottagaren. Det käcka med detta är att mottagaren enkelt kan tas av när drönaren skall packas ner i transportväskan vilket gör att det får plats två drönare :)

Ladda LiPo-batterier med solceller

Ladda LiPo-batterier med solceller

En sak som kan vara lite omständigt när man skall iväg en dag och flyga är att ladda batterierna på platsen man tänkt flyga på. Ett batteri till en racerdrönare räcker ca 5 minuter innan det behöver laddas igen.

För att slippa att ha med sig en hel uppsättning batterier så har vi byggt ett bärbart laddsystem som går på solceller.

I paketet ingår ett 12V masterbatteri på 10Ah (ett gammalt elcyckelbatteri), en solcellsregulator, en vikbar solpanel på 80w samt en LiPo-laddare som kan gå på 12V. På bilden visas batteriet, regulatorn och laddaren. Batteriet sitter inkapslat i en 3-printad hållare med fyra små ben och fästanordning för regulatorn. Från regulatorn går en en sladd som kopplas till solcellspanelen samt två sladdar för uttag av last, en för laddaren och en extra om man skulle vilja ha någon annan last. Jag använder den till att ge ström åt FPV glasögonen.

Solcellerna ger ström till batteriet via regulatorn som hela tiden laddas. Vid belastning så ger regulatorn först och främst ström från solcellerna direkt till lasten, i detta fall LiPo-laddaren. Skulle solen gå i moln fixar regulatorn så att laddaren får ström från batteriet om spänningen från solcellerna faller för mycket.

Systemet har fungerat helt fantastiskt i sommar och vi har kunnat vara ute flera timmar och klarat oss på 3 batterier per drönare. Det tar ca 20 minuter att ladda upp ett batteri igen efter användning och vi kan ladda två batterier samtidigt.

Solcellsregulatorn heter SmartSolar och kommer från Victron energy. Den har en tillhörande app som visar all info om batteriets status, hur mycket ström och effekt solcellerna ger, hur mycket last som tas ut och huruvida batteriet laddas eller belastas.

Wizzard 220 nya motorer, DJI Air Unit del 1

Wizzard 220 nya motorer, DJI Air Unit del 1

Dags för en uppgradering av min Eachine Wizzard 220.

Den här drönaren köpte jag för några år sedan som en RTF modell, det enda som behövdes var en mottagare och såklart en radio. En sjysst nybörjarmodell av enklare slag. Hårdvaran bestod då av ett enklare SP-racing F3-kort, 20A fartreglage, en enkel analog kamera med en 25mW sändare. Ett 3S-batteri var vad den klarade utan att bränna fartreglage och motorer.

Nu är tiden inne för en uppgradering med nya prylar!

  1. Motorer: iFlight Xing 2208 2450kv
  2. Flightcontroller: Diatone Mamba F405 DJI
  3. Fartreglage: Diatone MAMBA F50 PRO
  4. Kamera: DJI FPV
  5. Batteri: 4S 1550mAh

För att få plats med DJIs air unit kommer ramen behöva göras om lite. Den är lite för bred för att få plats mellan stagen så tanken är att rita nya stag som även kommer fungera som hållare för DJI Air Unit. Med en förlängd bakkropp kommer även övre plattan bytas ut till en anpassad variant som även den kommer ritas och printas ut. Ett nytt fäste för kameran kommer också behövas. Inte helt klar med den designen ännu men den kommer vara vinklingsbar upp till 70º.

Hållare för LiPo-batteri

Hållare för LiPo-batteri

I ett av mina flygplan har jag konstruerat en 3D-printad hållare för lipo-batteriet som kan låsas steglöst i olika lägen. Detta för att lätt kunna ändra tyngdpunkten och på så sätt även flygegenskaperna. Ett väl balanserat flygplan är som lättast att flyga men i bland vill man inte ha det enkelt :)

Ett något framtungt flygplan är inte direkt svårfluget men är svårare att få in i spinn och vid landning kan det hända att höjdrodret inte räcker till med en noslandning som följd. Att flyga med ett framtungt flygplan är inte speciellt kul och bjuder oftast inte på några överraskningar.

Ett något baktungt flygplan däremot blir mer instabilt och går lättare i spinn och kräver mer av piloten. Ett väldigt baktungt flygplan kan bli helt omöjligt att flyga. Det jag ville åstadkomma var att hamna precis på gränsen för stabilt och ostabilt. Detta för att kunna göra vissa konstflygmanövrar som annars inte är möjliga.

Hållaren består av två delar vari den ena batteriet sitter fast och den andra är fastlimmade i flygplanskroppen. Den övre delen glider i ett spår och går att låsa med en stor platt skruv som är integrerad i den delen batteriet sitter. Enkel och effektiv konstruktion :)

Mavic mini

Mavic mini

Mavic i miniformat är precis vad detta är! 249 gram! 30 minuters flygtid! Ja, vad säger man. DJI ligger inte på latsidan! För den som inte vill lägga lika mycket pengar som för den större varianten är detta ett bra alternativ. För hobbyfilmaren tar denna lilla filur tillräckligt bra film och foto. Den har som sin storebror en 3-axlig gimbal med suverän stabilisering. Räckvidden är något mindre men 4 km är inte dåligt på något sätt :)

Photo by Clayton Tonna on Unsplash

Lipo batterier

Lipo batterier

Den vanligaste sorten av batteri som används inom drönar och flyghobby är litiumpolymerbatterier. Dessa har en hög energitäthet och kan både laddas och urladdas med hög ström. Förmågan att ladda ur är oftast mycket högre än laddningsförmågan. Det finns många olika tillverkare och här är det idé att köpa något välkänt och inte det billigaste. Dessa batterier är väldigt känsliga och vid fel handhavande kan batteriet till och med bli farligt.

Ett överladdat batteri kan svälla och det som händer då är att en mycket explosiv gas bildas och går det för långt kan det självtändas med en ordentlig eldslåga som följd. Köper man en drönare från något känt fabrikat medföljer en laddare som är anpassad för drönarens batteri. Bygger man egna drönare och köper separata batterier är det viktigt att man även köper en ordentlig Lipo-laddare med balanseringsfunktion så att batterierna laddas på rätt sätt. Ett Lipo-batteri är uppbyggt av separata celler som har en nominell spänning på 3,7 Volt var. Man brukar prata om 1-cells, 2-cells, 3-cells osv. Ett 3-cells batteri har en nominell spänning på 3,7Vx 3, dvs 11,1 V.

På batteriet anges även ett C-värde som står för hur snabbt batteriet kan laddas ur. Har man ett batteri på 1000mah med ett C-värde på 10 är den högsta belastningen som batteriet klarar 1000xC-värdet, alltså 10000mA = 10A. När man laddar batteriet är det säkraste att ladda med 1C dvs 1 gånger batteriets kapacitet. I föregående exempel skulle batteriet då laddas med 1A. Ett 2000mah batteri skall laddas med 2A osv.

En cell är helt fulladdad när den når 4,2V. Försöker man få i ännu mer kommer cellen ta skada och bli farlig. Därför är det viktigt att laddaren håller koll på varje cell för sig när batteriet laddas, därav den speciella Lipo-laddaren. Det är även viktigt att inte tömma cellerna för mycket då de tar skada om de når en för låg spänning (3V). De flesta lipoladdare kommer inte ladda ett batteri som har kommit ner under 3V av säkerhetsskäl. Ett sådant batteri är förstör och skall kasseras. Lite enkelt förklarat så ökar motståndet i batteriet då spänningen blir för låg vilket medför att temperaturen ökar när batteriet sedan skall släppa ifrån sig energin. Detta kan leda till för hög temperatur och ett exploderande batteri.

De flesta applikationer som använder sig av lipo-batterier har en inbyggd säkerhetsfunktion som gör att batteriet inte kan laddas ut för mycket. Motorerna stannar helt enkelt innan spänningen blir för låg.

Nytt drönarprojekt, Armattan Marmotte anpassad för DJIs digitala FPV-system

Nytt drönarprojekt, Armattan Marmotte anpassad för DJIs digitala FPV-system

Då har hemsestern börjat och ett nytt drönarprojekt satt igång. Denna gången blir det en Armattan Marmotte förbered för att kunna flygas med DJIs digitala FPV-system.

Skillnaden mellan en vanlig Marmotteram och den anpassat för DJIs system är att kameraburen är omgjord så att inte propellrarna syns i bild, överplattan har hål för antennerna på rätt ställen och det bakre utrymmet bakom distanserna är måttanpassat för DJIs airunit.

Armattan Marmotte ligger i det övre prissegmentet och är väldigt välgjord.

Bottenplattan som är gjord av kolfiber kommer i ett stycke och kameraburen är gjord i titan.

Specifikationer

  • Ramvikt ca 115g
  • Mått, motor till motor 236mm
  • Bottenplattans stjocklek 4mm
  • Delar: Kolfiberram, titanbur, aluminiumdistanser, stålskruvar
  • Moneringsmått motor 22mm
  • Stack-höjd 20mm

Rekommenderad övrig hårdvara

  • Motorer 2306
  • ESC 30A
  • Propellerstorlek upp till 5,5"
  • Lipo: 4-5s/1500mAh

Ramen köpte jag här

« Till start